Recent progress in the development of genetically encoded Ca2+ indicators.
نویسنده
چکیده
Genetically encoded calcium indicators (GECIs) are powerful tools to monitor the dynamics of calcium ion (Ca(2+)) in living cells and organisms. With the help of GFP technology and DNA engineering, a dozen sets of GECIs have been developed so far. Their application has been widely extended into the analysis at the subcellular local, single and population of cell. In the past decades, GECIs have been dramatically improved in their performance and are becoming more and more useful for live imaging. In this review, the progress in the development of GECIs is discussed by introducing the history and emerging GECIs, which would help the selection of the appropriate GECI for a given application.
منابع مشابه
Calcium measurements in organelles with Ca2+-sensitive fluorescent proteins.
The recent improvement in the design and use of genetically encoded fluorescent Ca2+ indicators should foster major progress in three aspects of Ca2+ signaling. At the subcellular level, ratiometric probes with expanded dynamics are now available to measure accurately the local Ca2+ changes occurring within specific cell compartments. These tools will allow to determine precisely the role of or...
متن کاملRed fluorescent genetically encoded Ca2+ indicators for use in mitochondria and endoplasmic reticulum
Ca2+ is a key intermediary in a variety of signalling pathways and undergoes dynamic changes in its cytoplasmic concentration due to release from stores within the endoplasmic reticulum (ER) and influx from the extracellular environment. In addition to regulating cytoplasmic Ca2+ signals, these responses also affect the concentration of Ca2+ within the ER and mitochondria. Single fluorescent pr...
متن کاملMonitoring neural activity and [Ca2+] with genetically encoded Ca2+ indicators.
Genetically encoded Ca2+ indicators (GECIs) based on fluorescent proteins (XFPs) and Ca2+-binding proteins [like calmodulin (CaM)] have great potential for the study of subcellular Ca2+ signaling and for monitoring activity in populations of neurons. However, interpreting GECI fluorescence in terms of neural activity and cytoplasmic-free Ca2+ concentration ([Ca2+]) is complicated by the nonline...
متن کاملUltrasensitive Imaging of Ca2+ Dynamics in Pancreatic Acinar Cells of Yellow Cameleon-Nano Transgenic Mice
Yellow Cameleons are genetically encoded Ca2+ indicators in which cyan and yellow fluorescent proteins and calmodulin work together as a fluorescence (Förster) resonance energy transfer Ca2+-sensor probe. To achieve ultrasensitive Ca2+ imaging for low resting Ca2+ or small Ca2+ transients in various organs, we generated a transgenic mouse line expressing the highest-sensitive genetically encode...
متن کاملImaging neuronal activity with genetically encoded calcium indicators.
Genetically encoded calcium indicators (GECIs), which are based on chimeric fluorescent proteins, can be used to monitor calcium transients in living cells and organisms. Because they are encoded by DNA, GECIs can be delivered to the intact brain noninvasively and targeted to defined populations of neurons and specific subcellular compartments for long-term, repeated measurements in vivo. GECIs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of medical investigation : JMI
دوره 62 1-2 شماره
صفحات -
تاریخ انتشار 2015